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Def 3.3.1 Let  be a probability space. For each , suppose there is a continous

function  for  that satisfies  and that depends on . Then , to, is a

Brownian motion if for all  the increments

are independent and each of these increments is normally distributed with

moment-generating function for Brownian motion (ie, for the m-dimensiond random vector

 is

Def: A filtration for the Brownian motion is a collection of -algebras  satisfying

(i) information accumulates

(ii) adaptivity

(iii) Independents of future increaments

For , the increament  is independent of .

, be stochastic process, we say that  is adapted to the filtration  if for each 

the random variable  is -measurable

2 possibilities for the filtration 

(1) Let  contain only the information obtained by observing the Brownian motion itself up to

time 

(2) include in  information obtained by observing the Brownian motion and one or more

process

1.Brownian Motion

2.Filtration of Brownian Motion
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First- Order Variation

Def 3.4.1

Let  be a function defined for . The quadratic variation of  up to time  is

where  and 

RMK 3.4.2 suppose the function  has a continous derivatives. Then

thus 

Most functions have continous derivatives, and hence their quadratic variations are 0.

 3.4.3. Let  be a Brownian motion. Then  for all  almost surely

sampled quadratic variations

RMK 3.4.4

we therefore claim that 

3.Quadratic Variation
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standard normal random variable

The quadratic variation of Brownian motion is the source of volating in asset prices driven by

Brownian motion. We shall eventually scale Bromnican notion, sometimes in time and path -

dependert ways, in order to vary the rate at which volatility enters the asset prices.

RMK. 3.4.5 Let  be a partition of . In addition to computing the quadratic

variation of Brownian motion

Let  and  be constants and define the geometric Brownian notion

asset - price model used in the Black - Scholes Merton option pricing formula

When  is small, all be cone 

Thm. Let  be a Brownian motion and let  be a filtration for this Brownian

motion. Then , is a Markov process.

4.Volatility of Geometric Brownian motion

5.Markov Property
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Def: A family  of subsets of a sample space  is a -algebra if it satisfies following properties

(S1)  contains the external sets, The empty set  and the universe  belong to 

(S2)  is closed under complements; If a set of outcomes A belong to  then so does its

complement 

(S3)  is closed under countable unions: For any finite or countably infinite famliy of sets  ,

its union also belong to 

We consider -algebras  representing market information up to the  period.

Further properties of -algebras

(1)  algebras are closed under set difference :  

(2)  algepras are closed under countable intersections: If  is finite or countable,

deterministic process.

A deterministic process has each value exactly determined once the past is known:

stochastic process:

the past only determines the probability distribution of the next value, 

Def: A filtration in a measurable spare  is a sequence of nested  -algebras

adapted:

A stochastic process  is adapted to a filtration  ( )  if  is  - measurable

for each .

Def:

A stochastic process  adapted to a filtration  is a

martingale if 

sub-martingale if  player super-martingale if

supermartingale if  casino

Corollary:

Let  be a process adapted to a certain filtration .

If ( ) is a martingale, then  = 

If ( ) is a submartingale, then   

1. -algebra

2. Filtration

3. Martingale
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If ( ) is a supermartingale, then   

for all n  k

setting , this corollary implies

as  is  measurable it is constant. 

Def: A process  adapted to a filtration  is Markovian if for every function  and every  there

wrists a function  s.t, 

A geometric Brownian notion is a continuous - time stochastic process in which the logarithm of the

randomly varing quantity follows a Brownian notion

Def: suppose that  is standard Brownian motion and that  and 

. Let 

The stochastic process  is geometric Brownian motion with drift  and

volatility .

Note that the stochastic process

. is Brownian motion with drift parameter  and scalar

parameter  , so geometric Brownian motion is just exponential of this process.

, the process starts at 1.

For , the process  is geometric Brownian motion starting at .

Geometric Brownian motion  satisfies the stochastic differential equation

Distributions

For  has the lognornal distribution with parameters  and . The

probabilits density funceim  is given by

For , the distribution function  of  is given by

standard normal distribution

4.Markov processes

5. Geometric Brownian notion
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For  ard ,

6.Moments
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 : a simple process, constant on each subinterval 

1. Ito's Integral for Simple Integrands
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 The notations 

This is the Itô-Doeblin formula in differential form

Thm 4.4.1 ( - Doeblin formula for Brownian notion) Let  be a fer for which the partial

cteivatives , , and  are defined and continous, and let  be a Brownian

motion. Then, for every 

Thm 4.2.1 The  integral defined by  is a martingale

The 4.2.2 The Ito Integral satisfies

Thm 4.2.3. The quadratic variation accumulated vp to time  by the 2 to integral is

2.  - Doeblin Formula
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If we take a function  of both the time variable  and the variable , then

replace  by , replace  by 
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Take the lim , the left hand side is unaffected

Almost all stochastic processes, except those that have jumps, are Ito processes.

Def: Let , be a Brownian motion, and let  be an associated filtration, An Ito

process is a stochastic process of the form

 is nonrandom,  are adapted stochastic processes

Lemma 4.4.4 The quadratic variation of the ITo process

the total quadrate variation accumulated on  is 

integral with respect to time;  integral with respect to Brownian motion;

 integral with respect to It rouses; integrals of the form 

 the total quadratic variation accumulated on 

integral with respect to time:  integral with respect to Brownian motion;

 integral with respect to It processes; integrals of the form 

3. Formula for  Process
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 is some adapted process

Definition 4.4.5 Let  be an  process as described in def4.4.3. and let  be an

adapted process. We define the integral with respect to an  process

ô

Example 4.4.8 (Generalized geometric Brownian motion).

Define the  process

consider an asset price process

4.Summary of stochastic calculus:
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 : an agent has a portfolio at each time 

geometric Brownian motion:  of growth

at each time , the investor holds  shares of stock. The remainder of the portfolio value,

. is invested in the money market account.

Understanding of three terms;

(i) an average underlying rate of return  on the portfolio,

ii) a risk premium  for investing in the stock.

(iii) a volatility term propor vional to the size of the stock investment,

discrete - time:

It is analogous to the first line of , except in

 time steps forward one-unit at a time.

consider the discounted stock price: 

According to the Ito-Doebin formula with   (discounted stook pria)

Chapter 4 Black-Scholes-Merton-Equation

1. Black - Scholes - Merton Equation
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  the change in discounted

portfolio Value is solely due to change in discounted stock price.

 : denote the value of the call at time  if the stock price at that time is 

compute the differential of the discounted option price 

Let  Doeblin formula

A short option hedging portfolio stares with some initial capital  at each time 

agrees with 

comparing 4.5 .5 and 4.5 .7

First equate  terms

next equate dW(t) terms

2. Evolution of Option Value

3. Equating the Evolutions
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We should seek a continuous function  that is a solution to the Black - Scholes - Merton pde

terminal condition

boundary cindivion:  and 

As , the function  grows without bound.

The solution to the Black - Scholes - Merton equation with terminal condition : 

and boundary conditions  and 

 is the cumulative standard normal distribution

 : time to expiration

 : current stock price

: strike price, interest rate, stock volatility
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forward contract: obligates its holder to buy one share of the stock at expiration time  in exchange

for payment .

At expiration, the value of the forward contract is .

, the value of the forward contract at earlier times  if the stock price at time  is

value of a forward contract: 

The forward price of a stock at time  is defined to be the value of  that causes the forward

contract at time  to have value 0 . (i.e. 

For 

European put

pay off at 

these values must agree at all previous times 

put - call parity

assumption:

(1) a constant interest rate

(2) the stock is a geometric Brownian motion

(3) constant volatility .

4. Put - Call Parity
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def: A d-dimensional Brownian motion is a process

with the following properties:

(i) Each  is a one dimensional Brownian motion.

(ii) If , then the process is  and  are independent.

 associated with a -dimensional Brownian notion

(iii) (Information accumulates) For , every set in  is also in 

(iv) (Adaptivity) For each , the random vector  is  - Measurable.

(v) (Independence of future increments) For , the vector of increments  is

independent of 

Each component  is a one-dimensional Brownian motion, we have the quadratic variation

formula 

when . since  and  are independent,

we have 

Let  be a partition of . For , sampled cross variation of  and  on

 to be

The increments appearing on the RHos are all independent of one another and all have mean

 Multivariable Stochastic Calculus

1.Multiple Brownian Motions
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independent. each has expectation 

 be  to processes

the process  accumulates quadratic variation  per unit time.

multiplication rules:

Thm 4. 6. 2 (Two-dimensional Ito -Doeblin formula)

The two-dimensional Itô- Doeblin formula in differential form

Corollary 4.6.3 (Ito-product rule) Let  be Ito process. Then

2. -Doeblin Formula for Multiple Processes
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Thm 4.6.4

Let , , be a martingale relative to a filtration . Assume .  has

continuous paths. and  for all , then  is a Browian motion.

Pf: idea, to prove  is normally distributed  formula

integrated form

Thm 4.6.5 (two dimensions)

Let  and , be martingales relative to a , . Assume ,  has

continous paths, and  for all . If, in addition.  for all , then

 and  are independent Brownian motions

Ex 4.6.6 (Correlated stock price) Suppose

 are independent Brownian motions

3.Recognizing a Brownian Motion
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risk of a portfolio: variance of the return

eg. bank account - risk free

highly volatile stock - large variance

Option Values, Payoffs and strategies

 : Current value of the undelying asset, 

 : current value of a put,  .

E: the excise price

 at expiry: exercise the call option

profit: 

: We would make a loss of 

The value of the call option at expiry can be mitten;

time value: value before expiry

intrinstic value: value at expiry

pay off diagram.

 The Black - Scholes Model

1.Notions:
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the value of the call option at expiry: 

pay off diagram for a par .

Example of another pay off

 : Heaviside function 
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Put - call parity

The Black Scholes Analysis

The asset price follows the lognorand random walk.

Short selling is permitted and the assets are divisible We assume that we can buy and sell any

number of the underlying asset. and we may sell assets that we do not own,

1. Stochastic differential Equations

( 1) A stochastic differential equation is an equation of the form

The problem is then to find a stochastic process , defined for , such that 

The sol  at  will be -measurable (ie.  only depends on t he path of the Brownian

motion up to time  )

2.The Black - Scholes Equation
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Since the initial condition  is specified, all that is really needed to determine  is the

path of the Brownian motion between  and .

(2) One dimensional linear stochastic differential equation

  are nonrandom

functions of time

(3) Geometric Brownian Motion

The stochastic differential equation for geometric Brownian motion

If the initial value is 

(4) Hull-White interest rate model

stochastic differential equation

initial condition: 

first using the stochastic differential equation to compete

integrating both sides from  to  using the initial condition
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(Recall thm 4.4.9 It ̂o integral of a deterninistic integrand)

Let . be a Brownian motion .  : non-random function of time,

.

For each  is normally distributed with expected value 0 and variance 

(5) The Markov Property

consider stochastic differential equation

.

Let  be a Boral -measurable function.

 is the sol to 6.2.1 with initial condition 

we compute  numerically by beginning at 

choose a positive step size 

than set 

Then,

Theorem 

Let  be a sol to the stochastic differential equation  with initial condition given at

time 0 . Then. for 
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with probability,  as 

Taylor Expansion:  (2.5)

Stochastic differential equation

 : measure of the average rate of growth of the asset price, also known as the drift.

dX sample from a normal distribution

To leading order, 

plug into 2.5

Expand  in a Taylor series about  to get

we have anoption wise value 

 Black - Scholes Analysis

1. Recap of Ito's lemma

2. Analysis of Black Scholes Model
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No arbitrage

 The return on an amount  invested in riskless assets would see a growth of dt in a time 

Black - scholes partial differential equation

RMK:

 : rate of change of the value of our option or portfolio of options with respect to 

(2) equation 3.9 does not contain the growth parameter , the value of the option is independent of

how rapidly/slowly an asset grows

The most frequent type of partial diff equations in financial problems is the parabolic equation.

specific relationship  and its partial derivatives with respect to independent variables  and .

Typically

equation 

(1) European call:

 final condition for our PDE (3.10)

Asset - price boundary conditions:

applied at zero asset price.  pay off is 0

(2) European put:

since if  is ever  then it must remain 

For a time -dependent interest rate we have

As 

3. Black - Scholes Equation

4. Boundary and Final Conditions for European Options
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when  and  arecinstant, and the exact, explicit sol for the European call is

 : Cumulative distribution function for a standardized normal random

For a put

(1) Heat / diffusion equation

initial value problem

with initial data 

Technical point 1: Characteristics of Second Order Linear PDE

Parabolic: two real equal roots

diffusion: 

elliptical: no real characteristics

5. Black - Scholes Formula for European Options

6. PDE
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(1) The Delta function and the Heaviside function

Eg. I receive money at the rate f(t)dt in a time dt

the total payment:  equal to 1 independent of 

delta function,  : the limit as 

following properties:

I for each  is piecewise smooth

II. 

III. for each 

Such a sequence of functions is called a delta sequence.

Ex: 

the integral of any member of a delta sequence is well-behaved, being equal to 1.

For any smooth function , called a test function:

It is apparent that for any 

for any 

Heaviside function

 = 

Ex. M(t) represents the amount of money owned by a person

1. PDE
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MIt) satisfies the differciticl equation

(2) initial and boundary conditions

consider what initial and boundary conditions are appropriate for solutions of the diffusion

equation.

I. I. V. P. on a finite interval need: whole boundary

II. I.V.P. on an infinite interval

(1) Options or Divident-paying assets

constant divident yield

in a time  the underlying asset pays out a divident Do 

 is a constant.

divident yield is as defined as the proportion of the asset price paid out per unit time in this way

Use: good model for index options and for short-clated currency options.

consider the effect of the divident payments on the asset pie?

since we receive  for every asset held and since ne hold -  of the underlying, our portfolio

changes by an amount. 

Add it to 

the value of a European call option, with dividents

2. Variations on BSM
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(2) Discrete Divident payments

suppose that our asset pays just one dividend during the lifetime of the option, at time t = td.

at time td, holders of the asset receive a payment dy S, where  is the asset price just before the

divident is paid

absence of arbitrage

after paying divichent, less valuable

(3) jump conditions for Discrete Dividends.

(4) The Call Option with One Dividend Payment

Recall: Black - Scholes equation is backward parabolic.

When a dividend is paid, idea:

solve BSM back from expiry until just after the dividend date 

ci.e. until 

Implement the jump condition (6.7) across , to find the Values at 

solve B-S equation backwards from , using these values as final data. 

 : value of our call option

 : value of a vanilla European call option with exercise price 

At expirity, this derivative product has value

Thus, it is the same as  calls with exercise price 

For times before td, our call has value
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Vanilla: European calls and puts

 their payffes depend only on the final value of the underlying

Exotic: (path-dependart)

 Payoffs depend on the path

Begin with a Brownian motion .

zero drift (martingale)

define 

We also have 

the pair of random variable  tokes values in the set

Theorem 7.21 the joins density under  of the pair  is

Corollary 7.2 .2

the density under  of the random variable  is

and is 0 for 

Chapter 9 Exotic Options

1. Maximum of Brownian Motion with Drift
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(1) Notations

up-and-out

If the underlying asset price begins below the barrier and must cross above it to cause the knock out

down-and-out

has the barrier below the initial asset price and knocks out if the asset price falls below the barrier

knock in

they pay off zero unless they cross a barrier

We treat an up -and-out call on a geometric Brownian motion.

(2) Up -and -Out Call

our underlying risky asset is geometric Brownian motion

, is a Brownian motion under the risk-neutral measure 

The solution to the stochastic differential equation for the asset price is

The option knocks out iff ; if , the option pays off

In other words, the payoff of the option is

(3) Black-Scholes-Merton Equation

Theorem

Let  denote the price at time  of the up-and-out call under the assumption that the call has

not knocked out prior to time  and . Then,  satisfies the BSM pde

2. Knock-out Barrier Options
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in the rectangle  and satisfies the boundary conditions

Real:  is the value of the option whee the assumption that it has not knocked out prior to 

, whereas  is the value of the option without any assumprion.

In particular, if the underlying asset price rises above the barrier  and then returns below the

barrier by time , then  will be 0 because the option has knocked out.

define:  the first time  at which the asset price reaches the barrier .

is a  martingale

Before  gets to , this is just the martingale . Once  gets to . although the time parameter

 can march on, the value of the process is frozen at 

Lemma. We have

In particular,  is a -martingale up to time , or,

(4) Computation of the Price of the up-and-out call

The risk-nentral price at time 0 of the up-and-out call with payoff  given by (7.3.2) is

we integrate over the region: .

when , the time-zero value of the up-and -out call is
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Now let , and assume the underlying asset price cat time  is . Besides, 

If the call has not knocked out prior to time , its price at time  is obtained by replacing  by the

time to expiration  and replacing  by .

For , and , we hove 

(because the option knocks out when the asset price exceeds the barrier B.)

We also have  because geometric Brownian motion starting at 0 stays at 0 .


