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Abstract
This study investigates the valuation of barrier options under a scenario where
the underlying asset’s price follows a branching process in a random environ-
ment (BPRE). We develop a mathematical expression for pricing an up-and-
out call option, which is a type of barrier option.
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1 Introduction

Barrier options, also known as knock-in or knock-out options, have gained popularity since their
introduction in the over-the-counter market in 1967 due to their flexibility in hedging strategies
and cost-effectiveness compared to standard options. These options, including down-and-out,
down-and-in, up-and-out, and up-and-in options, are path-dependent. While closed-form so-
lutions for European barrier options exist, handling American or more complex options often
requires numerical methods.

Here’s a brief explanation of the different types:

e Up-and-Out Option: In an up-and-out option, the option becomes worthless (knocks out)
if the price of the underlying asset rises above a predetermined barrier level at any time

during the option’s lifetime.

e Up-and-In Option: Conversely, in an up-and-in option, the option only becomes active
(knocks in) if the price of the underlying asset rises above the barrier level during the

option’s lifetime.

e Down-and-Out Option: In a down-and-out option, the option becomes worthless if the
price of the underlying asset falls below a predetermined barrier level at any time during

the option’s lifetime.

e Down-and-In Option: In a down-and-in option, the option only becomes active if the price

of the underlying asset falls below the barrier level during the option’s lifetime.

Most literature on barrier options assumes geometric Brownian motion for the underlying asset,
which has limitations as it does not fully capture observed stock market behavior, such as jumps
and leptokurtic distributions. Different stochastic processes have been proposed to address these
drawbacks, like jump diffusion, constant elasticity of variance (CEV), Lévy stochastic volatility
models, and variance gamma (VG) models.

This paper introduces a model using a branching process in a random environment (BPRE)
to capture stock price movement, first proposed by Epps in 1996. It devThis model accounts for

thick-tailed return distributions, decreasing variance with stock price level, possible price jumps,
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and bankruptcy. Previous research has shown promising results in pricing European put options
and options on individual U.S. equities using the BPRE model, particularly in eliminating the
smile effect observed in option prices.

The paper focuses on deriving a formula for pricing European up-and-out call options based on
the BPRE model and comparing results with the lognormal model. It provides a mathematical
definition of the BPRE model, its properties, and advantages, along with a formula for the

equivalent martingale measure (EMM) parameters.

2 Literature Review

Barrier options were initially introduced in the literature by Snyder in 1965[I]. The first doc-
umented valuation of a barrier option occurred in Merton’s seminal paper [2], focusing on a
down-and-out call option. The framework for pricing path-dependent claims, including barrier
options, was further developed in Bergman [3].

In recent years, Barrier options have gained popularity due to their affordability compared
to standard options, making them useful in various risk management strategies. Valuing single-
barrier options is relatively straightforward.

There exists a variety of methods in pricing barrier options.

To evaluate a protected barrier option, the paper [4] adopted the standard Black-Scholes (1973)
model [5], assuming frictionless markets, absence of arbitrage, a constant risk-free rate r, a
constant dividend yield ¢, and that the underlying stock price follows geometric Brownian motion
with a constant volatility rate ¢ > 0. The up-and-out call option we are extending is strick at K
and has a barrier B above the initial stock price Sy. Let T" denote the first time after ¢; that the
stock price hits the barrier, given that the stock price is below the barrier at time 1. If the stock
price never hits the barrier, we set T = co. The indicator function of set A is denoted by 1(A).
Using risk-neutral valuation, the value of a European up-and-out call option with a protection

period is expressed as:



UO =F {G_T(T_tl)Rl(Sl > B) + e_TTl(T < tQ,Sl < B) + €_Tt2 max [0,52 — K] 1(T > tQ,Sl < B)}

A methodology similar to that used for Asian options, rooted in Brownian motion properties,
facilitating the derivation of a simple expression for the Laplace transform of double-barrier prices
[6]. One new method related to pricing barrier options is using forward deep learning to solve
forward-backward stochastic differential equations (FBSDEs). It extends forward deep BSDE
by incorporating additional nodes in the computational graph to monitor barrier conditions and
preserve relevant values at barrier breach or maturity. [7].

Another hybrid method for pricing barrier-style options, combines Laplace transformation and
finite-difference approaches. This method eliminates time steps, providing a fast and accurate
numerical solution, as well as handling complex barrier-style options with various constraints
effectively [8].

In this paper, we will focus on adopting branching process a random environment for pricing
barrier options. Specifically, we derive an analytical formula for the price of an up-and-out call

option, a typical type of barrier option [9].

3 Model

3.1 Branching Process

Based on the paper [9], we derive the following model in pricing barrier option. The Bienayme-
Galton-Watson branching process is a stochastic model used to describe the evolution of a pop-
ulation over discrete generations. It starts with an initial population size and each individual in
the population has a random number of offspring according to a specified probability distribu-
tion. The process continues for successive generations, where each individual’s offspring follow
the same distribution independently of other individuals.

Definition: Under the stated assumptions, a discrete-time process Z; is defined as a (Galton-

Watson) branching process if Zy = 1 and the population of the n-th generation, Z,, for n > 1, is



determined by the formula:

where Z(,,_1)j, for n > 1 and j > 1, are independent copies of an integer random variable Z.
This naturally accounts for the possibility of extinction (a concept to be further explored in
subsequent sections) because if Z, = 0 for a specific generation, then Z; = 0 for all ¢ > n. The
above definition is derived from certain properties associated with the Galton-Watson process
[10].

Let us consider a Bienayme-Galton-Watson branching process, Z,, n =0,1,2, ..., with a non-
random number of ancestors Zy > 0, and it is a postive constant, and the offspring probability

distribution:

P(Zyt1=01Z,=1)=(1—u),
given that the current generation (Z,,) has one individual is (1 — )

P(Zp1=k|Zy=1)=u-p-(1—-p)* 1, k=12,...,
where 0 <u<land 0 <p< 1.
The probability generating function (p.g.f.) f(s) = E[s?'|Zy = 1], which represents the ex-

pected number of offsprings in the first generation given a single ancestor, can be expressed using

the factorial moments of the distribution. Specifically,

1—m(1l—s)
§) = ———>, s€0,1],
where m = % is the offspring mean and
2 1—
v:7~£, 02—y tm—m2— U +( w)
1—p m p(1—p) p

are the offspring second moment and the offspring variance.
Suppose m > 1, indicating that the branching process is supercritical. It is well known that
for the p.g.f. fn(s) = E[s%"|Zy = 1], the following relation holds:
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o) = 1-m"(1—s)
o) iy

1+ 2m
which is crucial for calculating the probabilities P(Z,, = k|Zyp =1),k=0,1,2,...,n=1,2,...

(2.1)

Theorem 3.1. : Using derivative methods, we can get

P(Z,=k|Zy=1) = k! (];T;i)) . (2.2)

k=0,1,2,.., K.

Proof. of (2.2)

By differentiating f,(s) , we obtain for £k =1,2,3,...:

k!m" [;ﬁ(_lil;))] o

[1 + gl (1 - 3)} e

From the properties of the p.g.f., it follows that

1

P(Zy = KZo=1) = f{P(0) ;.

therefore we get for k = 1,2, ..., plugging into s = 0 and divide k!,
[l

2m(i— m)}
(1 N 27511( m;)))k+1

we get the probability for extinction in the n-th

P(Z,=k|Zy=1) =

Substituting s = 0 in f,(s) = #’m’
2m 1—m

generation:

L+ 2m(1 m)

Substituting k£ = 1 and s = 1 in (2.2), we get the first moment of the process:



ElZn|Zo=1=m", n=0,1,2,.... (2.5)

Substituting £ = 2 and s = 1 in (2.2), we obtain the second factorial moment:

1—mn

EZy(Zn—1)|Zy =1 =v-m"! , n=0,1,2,.... (2.6)

1-m
Theorem 3.2. If the process starts with Zy = I > 1 number of ancestors, it is a sum of I

independent and identically distributed branching processes. Therefore,

E[s%Zy = 1] = (fu(s))",

and we can calculate the probablity of Z, = k given Zyg =1 fork=1,2,...

P2 = HZo = 1) = LE W)

k! dsk a0

O]

Instead of using the derivatives, there is a simple iterative procedure. For any n > 0, Zyg = I >

1, and K > 0, the following steps are proposed:

n [ v(1—m™m) k—1
— _ oy = )
(1+2m(17m)>
1+2m(17m)

2. For Zy = 2, calculate the sum of two independent processes, each starting with Zy = 1

P(Zn=klZo=2)=Y P(Zn=jlZo=1)P(Zy=k—j|Zy=1),

k
J=0

forall k=0,1,2,..., K.

3. For Zy = I, I > 3, the process is the sum of two independent processes one of which starts



with Zg = I — 1 and the other starts with Zy = 1 particle. That is,

k
P(Zy=KlZo=1)=> P(Zy=jlZo =1~ 1)P(Zy =k — j|Zy = 1)

7=0
forall k =0,1,2,..., K.

Note the probabilities p1x(n) = P(Z, = k|Zy = 1), k = 0,1,2, ..., K, calculated in point (i) are

entered in an upper triangular matrix as follows:

po(n) pii(n) pie(n) -+ pix(n)

0 po(n) pu(n) - prr-1(n)

P(n) = 0 0  puo(n) -+ prr-—2(n)
0 0 0 cee P10 (n)

It is not difficult to see that the probabilities pji(n) = P(Z, = k|Zy = 1), k =0,1,2,..., K, are

equal to the (1, k)th element of the Ith power of matrix P(n).

3.2 Branching Process in random environment as a price process

BRPE model is established on the study [9]. Let’s consider a scenario where we have a supercrit-
ical Bienayme-Galton-Watson branching process denoted as Z,,, where n=0, 1, 2,..., along with
an independent Poisson process N(t), where ¢ > 0 with an intensity A > 0. We define a randomly
indexed branching process, termed as a BPRE, as S(t) = Zy), t > 0,

In this context, S(t) denotes the value of a single stock share at time t, measured in increments of
the smallest price movement (e.g., 1/100). In this framework, stock prices are defined as composed
of discrete "price particles." Each "price particle" in a given period generates a random number
of new "price particles," which collectively determine the stock price in the subsequent period.
Consequently, by permitting a random number of generations to emerge within each period, the
BPRE model generates stock prices continuously over time.

The fact that Z,, and N (t) are independent leads to the following expression for the probability

generating function (p.g.f.) of the process S(t) = Zx (), beginning with Zo = S(0) > 1 ancestors.
9



O(t,5) = Tl Git-e M (fa(5))5(0).

Because the initial asset price S(0) remains constant, meaning it is measurable with respect to
Ap = {Q,0}. we will omit the conditioning on S(0) to simplify the notation. By employing the
probability generating function, and after some calculations, we obtain the subsequent expressions
for the mean and variance of the process S(t), t > 0,

M(t) = E[S(t)] = 8(0)e*™D_ and

o2(t) = Var[S(t)]

27 Mt(m?—1 A(m—1
— S(0)2[Mm* 1) _ 2Atm=1)] | S(0)g2[eM(m?=1) _ eAt(m—1)]

m(m — 1)

These formulas allow us to examine in detail some of the main properties of the average rate
of return R(t) = w over a period (0,¢). The first two moments of the return distribution

have the following form:

E[R(t)] = eMm=1) _ 1,

02(6/\t(m271) _ eAt(m71)>
m(m — 1)

_ M(mP=1) _ _2Mt(m—1) 1
Var[R(t)] = e e + 5(0) (

The positive coefficient of ﬁ in the variance representation arises due to our examination
of a supercritical Bienayme-Galton-Watson branching process, where m > 1. Consequently, the
variance of the return is inversely proportional to the stock price. This phenomenon, known as
the "leverage effect," is inherent in the model.

Formulas for the skewness 71 [R(t)] and kurtosis v2[R(t)] are more intricate. However, if m = 1,

the standardized third and fourth moments have simpler expressions:

3
W(R(E)] = ) ]3/2—3(7(@ ! )

(VarlR]D2 ~ 7\ 2500 2v/3y/500)

_ ER t)4] 1 1 202 1
2RO = ERemz =3 = n tsome T so M T A

Estimations of m using daily stock data are slightly above one, indicating that the last two

10



expressions closely approximate the higher moments during short trading periods. Skewness is
consistently positive, decreasing with S(0), and generally increasing with the return period ¢.
Kurtosis is always positive, suggesting fatter tails compared to the normal distribution. Kurtosis

decreases with ¢ for ¢ values less than 35(0) + 202 + —L~. This value is generally greater than

Aov/2
22.1, implying that daily returns exhibit fatter tails than weekly and monthly returns. This

observation is empirically supported by market data and is termed as aggregational normality.

3.3 Option Pricing Using Branching Process

The discrete nature of S(t) under BPRE dynamics poses challenges in replicating nonlinear payoff
structures solely with the underlying asset and riskless bonds. Consequently, there isn’t a single
Equivalent Martingale Measure under which derivatives can be priced as discounted expected

" where n = 0,1,2,..., is a martingale.

values. It’s worth recalling that the process Z,m~
Likewise, the process S(t) shares a similar property, facilitating the identification of the EMM
needed for option pricing. I derive the following theorem based on [9]

Theorem 2.1 Under the conditions (i) a supercritical (m > 1) Bienayme-Galton-Watson
branching process Z,, n = 0,1,2,..., defined in the previous section and (ii) an independent
Poisson process N(t), ¢ > 0 with intensity A > 0. Define the randomly indexed branching
process, which is in fact a BPRE, S(t) = Zy ), t > 0. The process S(t)e= =1 where t > 0,

is a nonnegative martingale.

The proof involves demonstrating that for £ > 0 and 7 > 0:
E[e—)\(t+7)(m—1)s(t + 7_)|e—)\t(m—1)8(t)] _ e—)\t(m—l)S(t)

or equivalently:

E[S(t+7)|S@)] = MV S(1)

Since the processes N (t) and Z,, are time-homogeneous, and using the main property of branch-

ing processes, we have
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E[S(t+7)[S®)] = E[Zn(t + 7)[Zn(1)]

Zn (1)
=E | ) Zingen-nwlZn(t)
=1

Zn(1)
=E | Y ZinwlZn(t)
=1

= ZN(t)E[Z1n(r))

= S(t)E[Z1n(n)];

where Z; () are independent and identically distributed branching processes that are inde-

pendent of Zy(t), and each of them starts with one ancestor. Using
M(t) = E[S(t)] = S(0)eMm=1)

with S(0) = 1, we get E[Zy(7)|Zo = 1] = e} (™~1). This completes the proof of
E[S(t+7)[S(t)] = MV (1)

and the theorem. From

, it follows that S(t)e™", t € [0, 7], has mean
E[S(t)e ] = eAm=1=1)tg(().

Using Theorem 2.1, we conclude that the discounted stock price process S(t)e™"* is a martingale
under certain conditions regarding the parameters governing the distribution of S(t). Specifically,
when the condition A(m—1) = r holds true, alternatively expressed as A\u—p = r or Au(l—p) =r,
we derive u = p(1 + §) (Eq. 2.9). This equation serves as the foundation for defining the

Equivalent Martingale Measure (EMM) Y as follows:
12



1. We establish Y to establish the real-world measure P on the elementary sets of the Poisson

process, denoted as {Ny, = ng, Ny, = nq, ..., Ny, = ng}.

2. On the elementary sets of the branching process, Y is defined such that:
Y(Zny1=0/Z,=1)=(1—-10)

Y (Zpy1 = k| Zp =1) = ap(1 — p)*!

for k =1,2,..., where 4 is equal to p(1+r/)). In scenarios where p(1+ %) > 1, adjustments

to the parameter p (with 0 < p < 1) are used to ensure @ remains within the interval (0, 1).

The selection of @ ensures that 0 < @ < 1, thereby preserving sets with zero measure under
the real measure P; hence, all sets with zero measure under P retain zero measure under Y.
Consequently, these two measures are deemed equivalent. Notably, by virtue of its definition, the

discounted process S(t)e™"t

is a martingale under Y. Henceforth, we shall exclusively operate
within the framework of the risk-neutral probability, denoted simply as P. In the numerical
illustrations provided in Section 4, we maintain the estimated values of p and A while adjusting
the parameter u to satisfy u = p(1+ ).

Later on, we'll utilize the following expression, originally derived by Mitov and Mitov [22], to

compute the price of a European call option:

—rT —(r+A)T = ()‘T)n =
C(0) =S(0) — e "TK + e HAIT " K > (K — k)P(Z, = k| Zy = S(0)) (2.10)
n=0 ’ k=0

13



In this equation,

K : strike price
T : time to maturity of the option
r : risk-free interest rate
S(0) : current stock price

A : the intensity of the Poisson process.

For practical applications, an approximation can be used:

00 n K
C(0) ~ 5(0) = Ke T + e "IN Y O;? K> (K = k)P(Z, = k|Zy = S(0)), (2.11)
n=0 ) k=0

Here, the value of N can be determined such that the error from the approximation is less than
e. The probabilities P(Z,, = k|Zy = S(0)) for k =0,1,2,..., K and n = 1,2,..., N are computed

using the iterative procedure illustrated at the end of Section 2.1.

Barrier Option Pricing

e Knock-in barrier option: This type of option exercises when the underlying asset reaches
a specific price threshold. The option holder gains the right to exercise it only after this
threshold is met in the market.

If the price hits the designated level at any point during the option’s term, it becomes a
standard option and is valued accordingly. However, if the price never reaches this level, the
knock-in barrier option expires worthless.

There are two subtypes: up-and-in and down-and-in. An up-and-in option exercises when
the asset’s price goes above the predetermined barrier, while a down-and-in option exercises

when the asset’s price falls below the set barrier.

o Knock-out barrier option:

14



These options become invalid if the underlying asset reaches a specified barrier during the
contract’s duration. Knock-out barrier options can be further categorized into up-and-out
and down-and-out options. An up-and-out option ceases to exist when the asset’s price
exceeds the barrier set above its initial price. A down-and-out option ceases to exist when
the asset’s price falls below the barrier set below its initial price. If the asset reaches the
barrier at any point during the option’s term, the option is terminated or knocked out.
There are more complex barrier options, but in this paper, we focus only on an up-and-out
call option on a BPRE process. The methodology we develop can be also applied to up-
and-in call options. For the rest we can use in-out parity2 and the price of the standard call
option given in (2.10) and (2.11).

Theorem 3.1. The price of the barrier option using branching process is given by the ap-

proximation

N ()\T)n B
CUO(O) ~ 6_(T+)\)TZ T Z(] - K) ’ P(Zn = j> M, < B|ZO = S(O))
n=0 =k

with an error less than

Proof.

max(0, S(T) — K), if M(T) < B,
Cuo(T) =

0, if M(T) > B,

Given M(T) = maxo<;<7 S(t), applying martingale pricing yields the option’s current price:
Cuo(0) = e "TE[Cyo(T)].
Here, the expectation is under the risk-neutral measure P. Hence,
Cuo(0) = e "TE[max(0, S(T) — K)1{rs(r)<p)]

B
= ¢ “max(0,i — K)P(S(T) =i, M(T) < B),
1=0

where 14 denotes the indicator function of event A. Considering B > K, we get
15



By
PS(T) =k M) < B) =Y M e p(z, = k1, < BI2y = S(0)).
n=0 ’
_ (AT .
Cuo(0) = e~ FIT Y~ S > (i — K)P(Z, =i, M(T) < B|Zy = S(0))
n=0 =K
X (AT &
e (TIT N ( ,) > (i — K)P(Z, =i, M(T) < B|Z, = 5(0)).
n=N+1 n i=K
Since
i . B (B—K)(B—-K+1)
> (i—K)P(Zy=i,M(T) < B|Zy=S5(0) <> (i—K) = 5 ,
i=K i=K
then
o) )\T)n B
e rNT Y ( =Y (i — K)P(Z, =i, M(T) < B|Z = 5(0))
n=N+1 (=t
< o~ HNT —~ ()" (B-K)(B-K+ )
a n%—&—l 7’L' 2

Infinite series can be computed with an arbitrarily small precision € > 0, hence the number N

can be determined such that

e—(r—f—)\)T(B -~ K)(B-K+1) i (A1)

2
n=N+1

given the known values of 7, A\, T, B, K, and S(0). Consequently, we can approximate

N ()\T)n B
Cup(0) e €™ VTR T2y (= K)P(Zn = j, My < B|Zo = 5(0)), (3.1)
n=0 " j=K

with an error less than e. The technique for computing the probabilities P(Z,, = j, M,, < B|Zy =

S(0)) utilized in equation (3.1) is provided in the subsequent theorem.
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Theorem 3.2. If {Z,,n = 0,1,2,...} represents a Bienayme-Galton-Watson branching
process with transition probabilities p;j = P(Z1 = j|Zy = i), where 1,5 = 0,1,2,..., and B

18 a positive integer, then the probability

P(Zn = j, My < B|Zy = i)

is determined by the (i,7) element of the n-th power of the matriz P(B,1). Here, p;;(B,1)

1s defined as

pij(B,1) = P(Z1 = j,My < B|Zy =1i) =

0, B <i,3.

Proof. For the conditional probabilities P(Zy = j, M < B|Zy = i) calculated for the second

generation, we can express them as:

pij(B,2) = P(Zy = j, My < B|Zy = i)

P(Zy = j, My < B|Zy = )P(Zy = I, My < B|Zy = 1)

M= 10

P(Zy = j, My < B|Zy = )P(Zy = I, My < B|Zy = i)

T
I

Il
M=

P(Zy = j,My < B|Zy = 1)P(Z1 =, My < B|Zy = i)

T
I

B
= papj, 1<i,j<B.
=1

Therefore, P(B,2) = (pij(B,2))i j=1...5 = P(B,1)?. By repeating this procedure, we can

deduce by induction that P(B,n) = P(B,1)", which confirms the theorem statement.

17



4 Conclusion

In conclusion, this paper introduces a novel approach to pricing barrier options using a
branching process in a random environment (BPRE). The model combines elements of a su-
percritical Bienayme-Galton-Watson branching process with an independent Poisson process
to generate stock prices continuously over time. By establishing the Equivalent Martingale
Measure (EMM), the discounted stock price process is shown to be a martingale under
certain conditions, facilitating option pricing.

Specifically, the paper focuses on deriving a formula for pricing European up-and-out call
options based on the BPRE model. The methodology presented in this paper provides a
promising framework for pricing barrier options, offering insights for financial practitioners.
Future research directions may explore extensions of the model to different types of barrier
options and further empirical validation using market data. Overall, the BPRE model con-
tributes to the ongoing advancement of quantitative finance by offering innovative solutions

to pricing and risk management challenges in the derivatives market.
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